The Structure and Properties of β-La₃RuO₇: A New Structure Type with Isolated RuO₆ Octahedra

P. Khalifah,*,1 D. M. Ho,* Q. Huang,[‡],[§] and R. J. Cava*,[†]

*Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009; †Princeton Materials Institute, Princeton University, Princeton, New Jersey 08540; ‡NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899; and \$Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742

Received September 17, 2001; in revised form February 7, 2002; accepted February 22, 2002

A second lanthanum ruthenium oxide with the formula La₃RuO₇ is reported. This compound, β -La₃RuO₇, crystallizes in the $P2_1/c$ space group with a unit cell of a = 8.8388(3) Å, b = 5.6960(1) Å, c = 12.5830(3) Å, and $\beta = 104.729(1)^{\circ}$, as refined from powder neutron diffraction data. The two major structural motifs in this structure are isolated RuO₆ octahedra and edge-sharing chains of OLa₄ tetrahedra. Magnetic susceptibility measurements show this compound to have a magnetic moment of $\mu_{\text{eff}} = 3.92 \,\mu_{\text{B}}$ and a Weiss constant of $\theta = -70$ K. © 2002 Elsevier Science (USA)

INTRODUCTION

The Ln_3MO_7 [Ln = La-Lu, Y; M = Sb (1), Ta (1), Nb (2), Mo (3), Re (4), Ru (5), Rh (6)] family of quasi-1D materials contains corner-sharing chains of MO_6 octahedra, making them good candidate materials for the study of low-dimensional magnetism. The magnetic properties of this family are also interesting because this structure type exists for a wide range of *d*-electron counts, from d^0 to d^4 , giving rise to chains with local moments that range from S = 0 through $\frac{3}{2}$. The subset of compounds with $M = \text{Ru} (d^3)$ are the only members of this family to have the maximum transition metal low-spin local moment of $S = \frac{3}{2}$. Among the subset of $d^3 Ln_3\text{RuO}_7$ compounds, α -La₃RuO₇ is the only known compound with a nonmagnetic rare earth, providing a chance to study the physics of a $S = \frac{3}{2}$ chain within a nonmagnetic matrix.

Unfortunately, α -La₃RuO₇ is the most challenging member of the known Ln_3 RuO₇ compounds to synthesize. Although this compound was originally reported to be impossible to synthesize (6, 7), later work showed that it is possible to make this compound using a precursor lanthanum ruthenate with an unknown composition and structure (8, 9). Here, we report the crystal structure and magnetic behavior of this precursor compound, β -La₃RuO₇.

Although the initial interest in β -La₃RuO₇ involved its value as a synthetic precursor for making α -La₃RuO₇, the antiferromagnetic behavior of β -La₃RuO₇ provides a valuable opportunity for understanding the magnetism of highly oxidized Ru compounds with isolated octahedra. Two other lanthanum ruthenates are known to have isolated RuO₆ octahedra, La_{4.87}Ru₂O₁₂ and La₇Ru₃O₁₈ (10). However, their RuO₆ octahedra are arranged in a geometrical array conducive to geometric frustration. The measured magnetic behavior of β -La₃RuO₇ provides a baseline for understanding the magnetism of highly oxidized Ru states in the absence of complicating geometric frustration, allowing the magnetism of the frustrated compounds La_{4.87}Ru₂O₁₂ and La₇Ru₃O₁₈ to be put in perspective.

EXPERIMENTAL

Powder samples were prepared by mixing dried La_2O_3 and RuO₂ in a 3.33:1 ratio of La:Ru. The well-ground mixture was placed in a dense Al₂O₃ and fired in air at 1000°C for 1 day and was further heated in air at 1100°C for few days with multiple regrindings. The reaction was judged complete when there were no longer any La_{4.87}Ru₂O₁₂ X-ray diffraction peaks (10) present. It was found that in air, 1100°C was the highest temperature that β -La₃RuO₇ could be prepared without decomposing into other lanthanum ruthenates, while the synthesis of α -La₃RuO₇ required a temperature of 1250°C and 1 atm of O₂ to prevent the formation of other lanthanum ruthenates. At intermediate temperatures, a mixture of the two phases was present. Although tiny single crystals of β -La₃RuO₇ could be obtained from crystal growths in salt fluxes (NaCl, KCl), these crystals diffracted too weakly to allow an accurate structure determination to be made. Nonetheless, unit cell and space group information $(P2_1/c)$, and the approximate atomic

¹ To whom correspondence should be addressed at Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6056.

parameters could be obtained using long exposure times (120 s/deg). These approximate values were used as the initial input for neutron diffraction refinements. Both field-cooled and zero-field-cooled magnetic susceptibility measurements were performed on powder samples of β -La₃RuO₇ using a Physical Property Measurement System (Quantum Design).

Powder neutron diffraction data were collected at the NIST Center for Neutron Research using the BT-1 32counter high-resolution powder diffractometer. Room temperature data were collected using neutrons of wavelength 1.5401 Å produced by a Cu (311) monochromator. Collimators with horizontal divergences of 15', 20', and 7' of arc full-width at half-maximum were used before and after the monochromator, and after the samples, respectively. Intensities were measured in steps of 0.05° in the 2 θ range 3–168°. The lattice parameters were determined using GSAS (11) on data collected at 298 K. The neutron scattering amplitudes used in all calculations were b(La) = 0.827, b(Ru) = 0.721, and b(O) = 0.581 (×10⁻¹² cm).

RESULTS AND DISCUSSION

Neutron diffraction data (collected on a ~ 10 g powder sample) were used to refine the structure of β -La₃RuO₇ in the monoclinic space group $P2_1/c$ (no. 14) with a unit cell of 8.8388(2) Å × 5.6960(1) Å × 12.5830(3) Å and $\beta = 104.729(1)^{\circ}$. Structural parameters at room temperature are listed in Tables 1 and 2. The final three-phase refinement took into account the presence of two impurity phases (7.8 wt% La₂O₃ and 3.2 wt% α -La₃RuO₇) in addition to the majority phase (89.0 wt% β -La₃RuO₇). The calculated χ^2 (0.985) refined to a value less than 1 due to the underestimation of experimental errors, a problem that may occur when samples smaller than the instrumental norm (~ 20 g) are studied. The observed intensities, calculated intensities, and their difference are shown in Fig. 1.

An examination of the structure of β -La₃RuO₇ shows the two major structural motifs to be isolated RuO₆ octahedra

TABLE 1Crystal Data at Room Temperature				
Formula sum	La ₃ RuO ₇			
Formula weight	2519.173			
Crystal system	Monoclinic			
Space group	$P2_1/c$ (no. 14)			
Unit-cell dimensions (at 298 K)	a = 8.8388(2) Å			
	b = 5.6960(1) Å			
	c = 12.5830(3) Å			
	$\beta = 104.729(1)$			
Cell volume	612.68(4) Å ³			
Density, calculated	6.828 g/cm^3			
R _p	3.81%			
R _{wp}	3.09%			
χ^2	0.985			

 TABLE 2

 Atomic Coordinates and Thermal Parameters

Atom	Wyck.	X	Y	Ζ	$100U_{\rm iso}$
La1	4 <i>e</i>	-0.0022(2)	0.0217(4)	0.1400(1)	0.75
La2	4e	0.2970(2)	0.0180(4)	0.4273(1)	0.67
La3	4e	0.4307(2)	-0.0089(4)	0.1331(1)	0.60
Ru	4e	-0.2143(3)	0.0434(4)	0.3333(2)	0.83
O1	4e	-0.2511(4)	-0.1256(5)	0.1969(3)	1.35
O2	4e	0.0079(4)	0.0567(5)	0.3328(2)	1.16
O3	4e	-0.1700(4)	0.2654(6)	0.4658(2)	0.71
O4	4e	-0.4328(3)	0.0440(5)	0.3262(2)	0.74
O5	4e	-0.2385(4)	0.3416(5)	0.2528(3)	1.18
O6	4e	-0.1891(4)	-0.2410(5)	0.4273(2)	1.04
O 7	4 <i>e</i>	0.4917(4)	- 0.2625(5)	0.4897(2)	0.66

and chains of edge-sharing OLa₄ tetrahedra. The connectivity of these chains, which run parallel to the *b*-axis, is readily seen when β -La₃RuO₇ is viewed along the *a*-axis (Fig. 2). The separation of these structural motifs is best seen in views along the b-axis (Fig. 3). Two-thirds of the La atoms (La2 and La3) are found in OLa4 tetrahedra, while the other third of the La atoms (La1) only coordinate oxygens that are part of RuO_6 octahedra. Taking a cutoff of 3.2 Å as the upper limit for the La-O bond length, we find that all three La sites are nine-coordinate, and that all three La coordination polyhedra are quite irregular. The La-O bond distances in this structure are given in Table 3. It is interesting to note that the four shortest La-O bonds in the entire structure are found in the OLa₄ tetrahedron. The OLa₄ tetrahedra are quite regular, as all angles are within 10° of the 109.5° expected for an ideal tetrahedron. The isolated RuO₆ octahedra have no abnormal distortions. The O-Ru-O

FIG. 1. Observed and calculated powder neutron diffraction pattern for β-La₃RuO₇ (89.0 wt%), La₂O₃ (7.8 wt%), and α-La₃RuO₇ (3.2 wt%) at room temperature. Below the observed data (crosses) and calculated (solid line) pattern, the difference plot is shown. Vertical lines indicate the Bragg reflection positions for β-La₃RuO₇ (bottom), La₂O₃ (middle), and α-La₃RuO₇ (top).

FIG. 2. Structure of β -La₃RuO₇ viewed nearly parallel to the *a*-axis, showing the isolated RuO₆ octahedra and the edge-sharing chains of OLa₄ tetrahedra. The RuO₆ octahedra are shown in light gray while OLa₄ tetrahedra are shown in dark gray. Oxygen atoms are represented as small black spheres, while La atoms are shown as large gray spheres. Ru atoms (medium spheres) are only found at the center of RuO₆ octahedra.

bond angles fall between 86 and 95° , and the Ru–O bond lengths ranging from 1.91 to 2.05 Å.

We briefly note that there is no simple distortion that will effect the transformation between β -La₃RuO₇ and α -La₃RuO₇. This is perhaps best seen in the two different connectivities of the OLa₄ tetrahedral networks. In addition to having the same stoichiometry and the same Ru⁵⁺ oxidation state, both compounds also have four formula units per unit cell. The smaller cell volume of β -La₃RuO₇ (612.7 vs 636.3 Å³ for α -La₃RuO₇) means that this low-temperature structure type is about 4% denser than α -La₃RuO₇. The previously observed transformation from β -La₃RuO₇ to α -La₃RuO₇ on heating (8, 9) is believed to be more a result of chemical similarity than structural similarity.

In the two other lanthanum ruthenates with isolated RuO₆ octahedra, La_{4.87}Ru₂O₁₂ and La₇Ru₃O₁₈ (10), the RuO₆ octahedra are arranged around perfect or near-perfect three-fold rotation axes, leading to geometrical frustration of antiferromagnetic ordering. However, the spatial arrangement of octahedra in β -La₃RuO₇ seems to be very irregular. This absence of geometric order may allow β -La₃RuO₇ to serve as a benchmark for the unfrustrated magnetism of ruthenates.

A plot of the inverse magnetic susceptibility of β -La₃RuO₇ (H = 1.0 T) shows that Curie–Weiss behavior persists down to about 40 K (Fig. 4). A magnetic moment of $\mu = 3.92 \mu_B$ and a Weiss constant of $\theta = -70$ K are obtained from the fit parameters after correcting for the

FIG. 3. Structure of β -La₃RuO₇ viewed parallel to the *b*-axis. The separation between the OLa₄ chains (which run parallel to *b*) can be clearly observed. It can also be seen that one axis of the RuO₆ octahedra is nearly parallel to the *a*-axis. Atomic and polyhedral representations are the same as in Fig. 2.

presence of 7.8 wt% nonmagnetic impurities (La_2O_3) . No correction was made for the presence of 3.2 wt% α -La₃RuO₇ due to its small volume fraction and its nearly identical magnetic moment. The moment of β -La₃RuO₇ is very close to the ideal moment of 3.87 μ_B for Ru⁵⁺ ions $(S = \frac{3}{2})$. As expected, the Weiss constant is very similar to the values found for La_{4.87}Ru₂O₁₂ (-85 K) and La₇Ru₃O₁₈ (-58 K), which also have isolated RuO₆

TABLE 3Selected Bond Distances (Å)

Ru–O4	1.910(4)	La1-O6	2.476(4)	La2-O3	2.539(4)
Ru-O1	1.922(4)	La1-O3	2.611(4)	La2-O6	2.600(4)
Ru-O5	1.962(4)	La1-O1	2.619(4)	La2-O4	2.981(3)
Ru-O2	1.967(4)	La1-O2	2.673(4)	La2-O4	3.049(3)
Ru-O6	1.984(4)	La1-O3	2.692(4)		
Ru-O3	2.049(4)	La1-O2	3.068(4)	La3-O7	2.317(4)
		La1-O6	3.194(4)	La3-O7	2.395(4)
O7-La3	2.317(4)			La3-O4	2.442(3)
O7-La2	2.333(4)	La2-O7	2.333(4)	La3-O6	2.576(4)
O7-La2	2.351(4)	La2-O7	2.351(4)	La3-O4	2.597(4)
O7-La3	2.395(4)	La2-O5	2.411(4)	La3-O5	2.630(4)
		La2-O1	2.531(4)	La3-O3	2.655(4)
La1-O2	2.414(3)	La2-O1	2.539(3)	La3-O1	2.802(4)
La1-O5	2.437(4)			La3-O4	3.190(4)

0.020

0.016

0.012

0.008

0.004

n

FIG. 4. Inverse magnetic susceptibility of β -La₃RuO₇ at H = 1.0 T. Solid line shows the fit to a Curie–Weiss law. Inset: zoom of the low-temperature regime.

octahedra. Upon cooling below 18 K, β -La₃RuO₇ undergoes an antiferromagnetic ordering transition, seen as a peak in the magnetic susceptibility data (Fig. 5). The temperature of this transition is noticeably higher than the corresponding transitions in La_{4.87}Ru₂O₁₂ (4.5 K) and La₇Ru₃O₁₈ (14 K). Although La₇Ru₃O₁₈ appears to have a rich magnetic phase diagram, the behavior of β -La₃RuO₇ is consistent with a virtually field-independent antiferromagnetic ordering transition. We note that identical behavior was obtained with zero-field cooling using a 0.1 T field and with field cooling under a 1.0 T field.

CONCLUSIONS

The structure and magnetic properties of β -La₃RuO₇ have been characterized. The stoichiometry and Ru oxidation state have been found to be identical to those of the quasi-1D material, α -La₃RuO₇, making this new material an appropriate synthetic precursor for the α phase. The strength of the magnetic interactions in β -La₃RuO₇ are observed to be comparable to those of other lanthanum ruthenates with isolated octahedra, though the antiferromagnetic ordering temperature of β -La₃RuO₇ is the highest to date among these compounds.

FIG. 5. Magnetic susceptibility of β -La₃RuO₇ at H = 1.0 T. Solid line shows the fit to a Curie–Weiss law. Inset: zoom of the low-temperature regime.

0.020

0.018

0.016

0.014

0.012

0.010^L 0

150

 β -La₃RuO₇

100

50

20

200

T(K)

40

250

60

300

80

100

350

400

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation grant DMR-9725979. P.G.K. gratefully acknowledges the support of a National Science Foundation Graduate Fellowship.

REFERENCES

- 1. H. J. Rossell, J. Solid State Chem. 27, 115 (1979).
- A. Kanh-Harari, L. Mazerolles, D. Michel, and F. Robert, J. Solid State Chem. 116, 103 (1995).
- J. E. Greedan, N. P. Raju, A. Wegner, P. Gougeon, and J. Padiou, J. Solid State Chem. 129, 320 (1997).
- G. Wltschek, H. Paulus, I. Svoboda, H. Ehrenberg, and H. Fuess, J. Solid State Chem. 125, 1 (1996).
- W. A. Groen, F. P. F. van Berkel, and D. J. W. Ijdo, Acta. Crystallogr. Sect. C 43, 2264 (1987).
- 6. J. F. Vente and D. J. W. Ijdo, Mater. Res. Bull. 26, 1255 (1991).
- F. P. F. van Berkel and D. J. W. Ido, *Mater. Res. Bull.* 21, 1103 (1986).
 P. Khalifah, Q. Huang, J. W. Lynn, R. W. Erwin, and R. J. Cava, *Mater. Res. Bull.* 35, 1 (2000).
- 9. P. Khalifah, Q. Huang, J. W. Lynn, R. W. Erwin, B. Batlogg, and R. J. Cava, *Phys. Rev. B* 60, 9573 (1999).
- P. Khalifah, Q. Huang, D. M. Ho, H. W. Zandbergen, and R. J. Cava, J. Solid State Chem. 155, 189 (2000).
- A. C. Larson and R. B. Von Dreele, "General Structure Analysis System," Report no. LAUR086-748, Los Alamos National Laboratory, Los Alamos, NM 87545.

